Congruent Segments

Given: AB

Construct a segment congruent to AB.

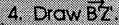
- 1. Use a straight edge to draw a working line, I.
- 2. Choose a point on t and label it A'.
- Set your compass for radius AB by placing one end at point A and another at point B. Draw an arc.
- Using AB as radius, place one end of compass on A' and draw an arc. Label the point of intersection B'.

AB ≅ A'B'

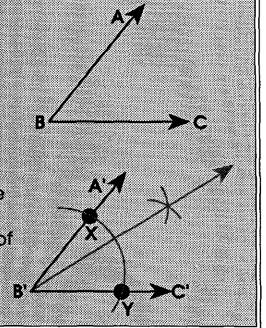
Construct a segment congruent to CD.

Construct a segment congruent to EF.

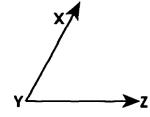
3. Construct a segment congruent to XY.

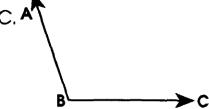

- 4. Consruct a segment whose length is $\overline{\text{CD}}$ + $\overline{\text{EF}}$.
- 5. Construct a segment whose length is \overline{EF} + \overline{XY} .
- 6. Construct a segment whose length is $\overline{EF} \overline{CD}$.

Angle Bisectors


Given: ∠ABC.

Construct an angle bisector.


- Copy ∠ABC.
- Using B' as center, choose any radius, and draw an arc Intersecting B'A' and B'C'.
- 3. Using X as center, choose a radius greater than 1/2 XY, draw an arc in the interior of ∠A'B'C'. Repeat using Y as center and same radius. Label point of intersection Z.


B'Z bisects ∠A'B'C'.

Bisect ∠XYZ.

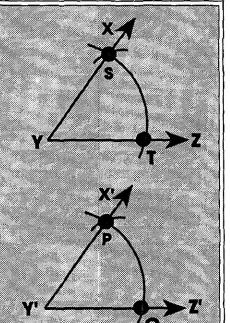
2. Bisect ∠ABC. ABC.

3. Construct a 45° angle.

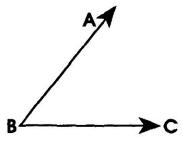
(Hint: construct perpendicular lines first.)

4. Construct an equilateral Δ . Use AB as the length of each side.

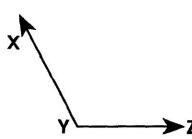
- 5. What is the measurement of each angle in #4? _____
- Construct a 30° angle.
 (Hint: use your equilateral Δ.)

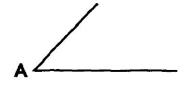

Congruent Angles

Given: ZXYZ.

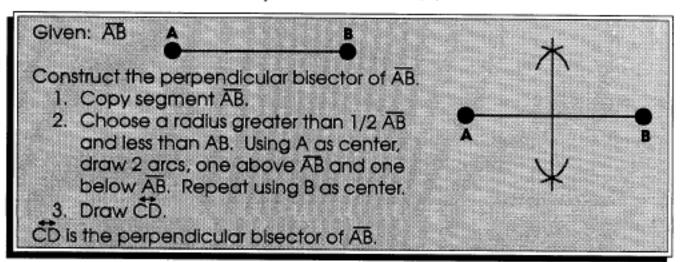

Construct an angle congruent to ZXYZ.

- 1. Draw a ray, label it Y'Z'.
- Using Y as center, choose any radius and draw an arc that intersects YX and YZ. Label points S and T.
- 3. Using Y' as center and the same radius, draw an arc intersecting $\overrightarrow{Y'}\overrightarrow{Z}'$. Label the point of intersection Q.
- 4. Using T as center, find radius equal to TS. Draw arc through point S.
- 5. Using Q as center, draw arc using radius equal to TS. Label point of intersection P.
- 6. Draw YP.


ZXYZ≅ ZPY'Z'.


1. Construct a congruent angle to ∠ABC.

2. Construct a congruent angle to ∠XYZ.



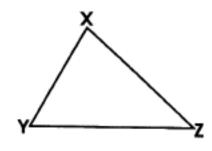
3. Construct $\triangle ABC$ using $\angle A$ and $\angle B$.

Perpendicular Bisectors

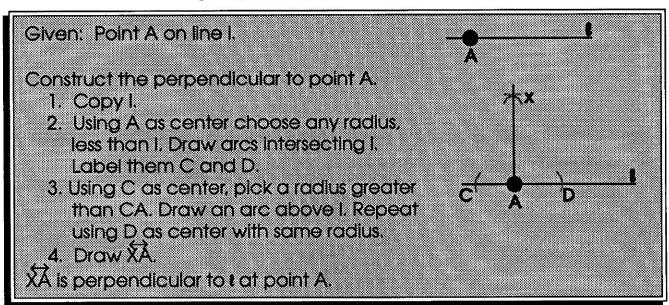
Construct the perpendicular bisector of the following.

1.

2.


Č D

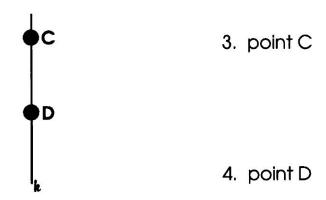
3.


II. Bisect side \overline{YZ} of ΔXYZ .

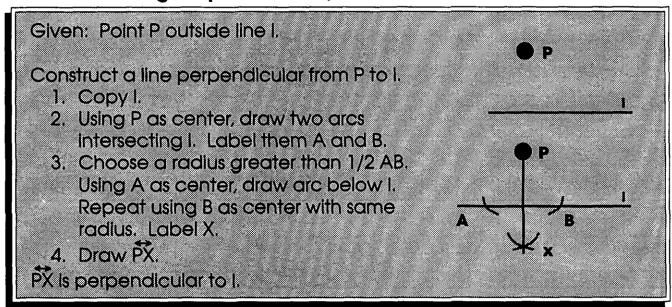
4.

Construct a segment whose length equals XY + YZ + XZ.

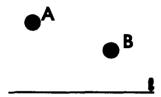
Constructing Perpendiculars, Given a Point on the Line



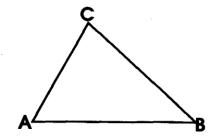
I. Construct perpendicular lines to the given points.



1. point A


2. point B

Constructing Perpendiculars, Given a Point Not on the Line



- I. Construct perpendicular lines to \$\epsilon\$ from:
- 1. point A

2. point B

II. Construct the perpendicular lines from each vertex to the opposite side in $\triangle ABC$.

